Approximation complexity of Metric Dimension problem

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Approximation Complexity of Metric Dimension Problem

We study the approximation complexity of the Metric Dimension problem in bounded degree, dense as well as in general graphs. For the general case, we prove that the Metric Dimension problem is not approximable within (1 − ǫ) lnn for any ǫ > 0, unless NP ⊆ DTIME(nlog logn), and we give an approximation algorithm which matches the lower bound. Even for bounded degree instances it is APX-hard to d...

متن کامل

On the Complexity of Metric Dimension

The metric dimension of a graph G is the size of a smallest subset L ⊆ V (G) such that for any x, y ∈ V (G) there is a z ∈ L such that the graph distance between x and z differs from the graph distance between y and z. Even though this notion has been part of the literature for almost 40 years, the computational complexity of determining the metric dimension of a graph is still very unclear. Es...

متن کامل

Conditional Dimension in Metric Spaces: A Natural Metric-Space Counterpart of Kolmogorov-Complexity-Based Mutual Dimension

It is known that dimension of a set in a metric space can be characterized in information-related terms – in particular, in terms of Kolmogorov complexity of different points from this set. The notion of Kolmogorov complexity K(x) – the shortest length of a program that generates a sequence x – can be naturally generalized to conditional Kolmogorov complexity K(x : y) – the shortest length of a...

متن کامل

Complexity Analysis of Problem-Dimension Using PSO

-This work analyzes the internal behavior of particle swarm optimization (PSO) algorithm when the complexity of the problem increased. The impact of number of dimensions for three well-known benchmark functions, DeJong, Rosenbrock and Rastrigin, were tested using PSO. A Problem-Specific Distance Function (PSDF) was defined to evaluate the fitness of individual solutions and test the diversity i...

متن کامل

The metric dimension and girth of graphs

A set $Wsubseteq V(G)$ is called a resolving set for $G$, if for each two distinct vertices $u,vin V(G)$ there exists $win W$ such that $d(u,w)neq d(v,w)$, where $d(x,y)$ is the distance between the vertices $x$ and $y$. The minimum cardinality of a resolving set for $G$ is called the metric dimension of $G$, and denoted by $dim(G)$. In this paper, it is proved that in a connected graph $...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Discrete Algorithms

سال: 2012

ISSN: 1570-8667

DOI: 10.1016/j.jda.2011.12.010